Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.17.435581

ABSTRACT

Background: Insights into early, specific humoral and cellular responses to infection with SARS-CoV-2, as well as the persistence and magnitude of resulting immune memory is important amidst the ongoing pandemic. The combination of humoral and cellular immunity will most likely contribute to protection from reinfection or severe disease. Methods: Here, we conducted a longitudinal study on hospitalized moderate and severe COVID-19 patients from the acute phase of disease into convalescence at five- and nine-months post symptom onset. Utilizing flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune memory during and after human SARS-CoV-2 infection. Findings: During acute COVID-19, we observed an increase in germinal center activity, a substantial expansion of antibody-secreting cells, and the generation of SARS-CoV-2-neutralizing antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralizing antibody titers as well as robust specific memory B cell responses and polyfunctional T cell responses at five- and nine-months after symptom onset in both moderate and severe COVID-19 patients. Long-term SARS-CoV-2 specific responses were marked by preferential targeting of spike over nucleocapsid protein. Conclusions: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2 specific immunological memory in hospitalized COVID-19 patients long after recovery, likely contributing towards protection against reinfection.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.27.21250591

ABSTRACT

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in SARS-CoV-2-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion and migration of granulocytes (e.g. CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers supporting pathophysiologic relevance. Furthermore, clinical features, including multi-organ dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19. SignificanceAccumulating evidence shows that granulocytes are key modulators of the immune response to SARS-CoV-2 infection and their dysregulation could significantly impact COVID-19 severity and patient recovery after virus clearance. In the present study, we identify selected immune traits in neutrophil, eosinophil and basophil subsets associated to severity of COVID-19 and to peripheral protein profiles. Moreover, computational modeling indicates that the combined use of phenotypic data and laboratory measurements can effectively predict key clinical outcomes in COVID-19 patients. Finally, patient-matched longitudinal analysis shows phenotypic normalization of granulocyte subsets 4 months after hospitalization. Overall, in this work we extend the current understanding of the distinct contribution of granulocyte subsets to COVID-19 pathogenesis.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.25.20181404

ABSTRACT

Monocytes and dendritic cells are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells might contribute to immunopathology. A comprehensive map of the mononuclear phagocyte (MNP) landscape during SARS-CoV-2 infection and concomitant COVID-19 disease is lacking. We performed 25-color flow cytometry-analysis focusing on MNP lineages in SARS-CoV-2 infected patients with moderate and severe COVID-19. While redistribution of monocytes towards intermediate subset and decrease in circulating DCs occurred in response to infection, severe disease associated with appearance of Mo-MDSC-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage specific and in select cases associated with severe disease. Finally, unsupervised analysis revealed that the MNP profile, alone, could identify a cluster of COVID-19 non-survivors. This study provides a reference for the MNP response to clinical SARS-CoV-2 infection and unravel myeloid dysregulation associated with severe COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL